
[Mohan et al., 3(5): May, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449
 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[730-733]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

A Review Survey on Deadlock Detection in Multithreading
A. Mohan*1, Dr. P. Senthil Kumar2

*1 Research Scholar(Anna University), Saveetha Engineering College, Chennai – 602105, Tamil Nadu,

India
2 Professor, SKR Engineering College, Chennai – 600123, Tamil Nadu, India

mohanmail@sify.com

Abstract
Deadlock freedom is the major challenge in developing multithreading programs. To avoid the potential

risk of blocking a program, prior monitoring of threads can be made during the execution process. The proper

monitoring scheme can monitor the threads and can identify whether the threads might enter a deadlock stage. It

maintains a back up to store the threads. So after the execution of one thread the injection of the other thread can be

made from backup into the processing stage. By using this process the deadlock can be avoided in the

multithreading environment. In the proposed system, the thread monitoring and thread mapping techniques are

implemented to identify the threads running in the program. A map is present which is used to store the thread

objects, the locks acquired and requested by them. Whenever a thread tries to acquire a lock and if the access is

denied, then it waits for certain period of time. After the time period expires, the thread again tries to access the lock.

If the access is still denied then the thread traverses the map to identify the threads that have requested or held the

same locks requested by it. If it finds any such threads then it detect that deadlock has occurred. The deadlocked

threads wait for each other for infinite time. Now the thread releases all the locks acquired by it, thereby allowing

the deadlocked threads to complete their operations. If more than one thread detects deadlock, then priorities are

assigned to them at random manner. According to the priorities of threads, they wait for a while (i.e. let other

threads to complete their operation). According to the priority, thread execution states are changed. It helps the

threads to recover from deadlock situation and allows the threads to complete their execution.

Keywords: Multithreaded program, synchronization, deadlock monitor, thread map, priority.

 Introduction
Deadlock-freedom is a major challenge in

developing multi-threaded programs, as a deadlock

cannot be resolved until one restarts the program

(mostly by using manual intervention). To avoid the

potential risk of blocking, a program may use try-

lock operations rather than lock operations. In this

case, if a thread fails to acquire a lock, it can take

appropriate action such as releasing existing locks to

avoid a deadlock. In the existing system, the usage of

mapping is not implemented. In another approach

circular mutex wait deadlocks and lock graphs are

cleared, but this model is not suited for all

environments. The existing dynamic methods have

less efficiency when compared to the static deadlock

analysis method. The proposed system provides an

efficient mapping technique for avoiding deadlocks

depending upon priority.

The main aim of the project is to avoid the

deadlocks occurred in the threads during execution. It

is done by providing a map that stores the thread

objects, locks acquired and requested by the thread.

In this case, if a thread fails to acquire a lock, it can

take appropriate action such as releasing existing

locks to avoid a deadlock.

In order to avoid deadlocks in threads during

the execution process a monitor is introduced in the

proposed work that identifies the threads running in

the program i.e. the thread objects are identified.

After this process a map is generated that store the

thread objects and the locks acquired and requested

by them. Whenever a thread tries to acquire a lock

and if the access is denied then it waits for certain

period of time. After the time period expires, the

thread again tries to access the lock. Due to some

reasons if accessing the locks is still denied then

thread traverses the map to identify the threads that

have requested or held the same locks requested by it.

If it finds any such threads then it recognizes that

deadlock has occurred after which the deadlocked

thread will wait for each other for infinite time. When

http://www.ijesrt.com/

[Mohan et al., 3(5): May, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449
 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[730-733]

it finds that deadlock condition prevails, the thread

releases all the locks acquired by it, so that it might

allow the deadlocked threads to complete their

required operation. In another scenario if more

deadlocks are detected then according to the priority,

the execution of the priority based threads are

executed in random manner. During this process the

threads involved in execution are been backed up.

According to the priority the threads execution states

are changed. This helps the threads to recover from

deadlock situation and let the other threads to

complete their execution.

Survey On Deadlock
When developing a dynamic deadlock detection

technique for multithreaded programs, a multi

disciplinary approach is essential. In the static and

dynamic techniques are used for exposing deadlock

potential[1]. It has three extensions to the basic

algorithm (logic graph) to eliminate and to label as

low severity or false warning of possible

deadlocks[1,2]. The extension of lock graph

algorithm is to detect the deadlock in static and

dynamic techniques[1,2].

In, a new technique in practical static race

detection is proposed for parallel loops in java[2].

The utilization of these constructs and libraries

improves accuracy and scalability[2,1]. The new tool

called IteRace has been introduced which includes a

set of methods that are specialized to employ the

intrinsic thread, safety, and dataflow structure of

collections[2]. The IteRace is fast and perfect enough

to be realistic. It scales well for programs of lakhs of

lines of code and it reports little race warnings, thus

shuning a common consequence of static analyses.

The tool implementing this method is fast, does not

delay the programmer with many warnings, and it

finds latest bugs that were conformed and fixed by

the developers[2].

In, detecting atomicity violations using dynamic

analysis technique is presented[3]. A more

fundamental noninterference property is atomicity.

When a method execution is not affected by

concurrently-executing threads, then that method is

called as atomic method[3]. It contains both formal

and informal correctness arguments[3,2]. Detecting

atomicity violations combine ideas of both lipton’s

theory of reduction and early dynamic race detectors.

It is effective error detection for unintended

interactions between threads. It will be more effective

than standard race detectors[3,2].

We proposes the type inference algorithm for

rccjava. The performance of the algorithm is applied

on programs up to 30,000 lines of code. The resulting

annotations and race-free guarantee our type

inference system. Type inference algorithm is applied

to the concurrent program to manipulate the shared

variable without synchronization[4]. This algorithm

has some lock variables. Extending this inference

algorithm to larger benchmark has some issue. It

produces reliable error reporting.

They describe an approach for online deadlock

detection for multithreaded programs using the

prediction of future behavior of threads. 74% of

deadlocks were predicted using the proposed

method[5]. Some specific behaviors of threads are

extracted at run time and converted into predictable

format using Time series method. The proposed

method has several advantages compared to the

existing static methods[5,4]. Powerful technique is

used for predicting complex deadlocks[5].

We implemented an efficient algorithm to sense

concurrent programming errors online[6]. System

programmers monitor the program events where

locks are approved or handed back, and in places

where values are accessed that may be shared among

multiple Java threads[6,5]. The proposed RACER

algorithm uses ERACER for memory model of java

and AspectBench compiler for implementation. In

this paper, they projected a language extension

towards the aspect-oriented programming language

AspectJ[6]. The proposed AspectJ have implemented

the following three points. They are Lock(),Unlock(),

Maybeshared().

 Examines the performance scaling of various

processor cores and application threads. It analyzes

the performance and scalability by correlating low-

level hardware data to JVM threads and system

components[7, 4,3]. It uses the JVM tuning

techniques to solve the problems regarding lock

conditions and memory access latencies. The study of

performance and scalability of multi threaded java

application on multi core systems is done. The

proposed method reduces the bottlenecks using JVM

tuning techniques. Inappropriate use of

synchronization leads to large number of stall

cycles[7,4,3].

Present a novel dynamic analysis method to find

real dead- locks in multi-threaded programs.

DEADLOCK- FUZZER is the new technique used to

find the deadlocks in two phases[8]. In the First

phase, a potential deadlock in a multi-threaded

program is found using dynamic analysis technique

by execution of the program. In the second phase,

deadlock creation is controlled using threads

scheduler[8]. DEADLOCK-FUZZER is implemented

to find the all previously known deadlocks in large

benchmarks, but it does not discover previously

http://www.ijesrt.com/

[Mohan et al., 3(5): May, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449
 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[730-733]

unknown deadlocks in an efficient manner. This

technique needs both static and dynamic

techniques[7,8].

A new Java thread deadlock detection approach

called as JDeadlockDetector. This system requires

source code and built on non-official JVMs for Java

thread deadlock detection solutions[9]. Many Java

programs cannot be evaluated with these solutions.

JDeadlockDetector is fabricated on the official Java

Virtual Machine, viz., OpenJDK’s HotSpot.

JDeadlockDetector have three unique advantages

compared to the existing system[9]. They are

application transparency, detection accuracy and

minimized performance overhead.

JDeadlockDetector attains no false negative and

diminished false positive. JDeadlockDetector detects

Java thread deadlock based on the capability of

monitoring the thread states and synchronization

states on runtime[9,10]. In this way the technique

achieves their advantages. To track the control flow

and data flow of a Java program, Hotspot

introspection architecture has to be extended. This

will afford a capability to analyze the vulnerability of

Java programs[10].

A new two phase deadlock detection scheme was

introduced which provides efficient memory

utilization and time constraints. The performance of

the proposed system is much higher than the

traditional approach in finding the potential deadlock

in application[11,12]. First phase reduces lock by

filtering out certain locks that cannot participate[12].

Second phase creates smaller lock graph for potential

deadlock detection. The proposed work can minimize

the overall deadlock detection time and increases the

performance[12].

We focus on developing dynamic deadlock

detection technique which reduces the deadlock

occurrences.

Result
The proposed system maintains a deadlock map

that holds the information about all the threads

running in a program. This will reduces the deadlock

occurrences based on the random priority assignment.

The deadlock monitor is control the overall process

of program execution.

Conclusion
This paper provides an efficient way for accessing

shared memory by the multiple threads using

deadlock monitor. Deadlock monitor can be used to

monitor the thread process regularly. Monitor will

reduce the deadlock occurrences. Thread map will be

used for dynamic deadlock detection method. Also, it

reduces the cost of accessing memory and improves

the efficiency of multithreaded applications.

References
[1] Agarwal R. Bensalem S. et al., (2010)

‘Detection of deadlock potentials in

multithreaded, programs’ IEEE Transactions

Vol. 54 No. 5 Paper 3.

[2] Cosmin Radoi, Danny Dig (2013) ‘Practical

Static Race Detection for Java Parallel Loops’

In Proceedings of the 2013 International

Symposium on Software Testing and Analysis

(ISSTA '13) received ACM SIGSOFT

Distinguished Paper Award, Lugano,

Switzerland.

[3] Cormac Flanagana, Stephen N.Freundb (2008)

‘Atomizer: A dynamic atomicity checker for

multithreaded programs’, Elsevier - Science of

Computer Programming 71, pp. 89–109.

[4] Cormac Flanagana, Stephen N. Freundb (2006)

‘Type inference against races’ Elsevier -Science

of Computer Programming 64, pp.140–165.

[5] Elmira Hasanzade Kashan, Seyed Morteza

Babamir (2012) ‘Artificial Neural Network

Based Model for Online Prediction of Potential

Deadlock in Multithread Programs’ The 16th

CSI International Symposium on Artificial

Intelligence and Signal Processing, pp. 417-

422.

[6] Eric Bodden and Klaus Havelund (2010)

‘Aspect-Oriented Race Detection in Java’ IEEE

Transactions on Software Engineering Vol. 36,

No. 4, pp. 509-527.

[7] Kuo-Yi Chen, J. Morris Chang and Ting-Wei

Hou (2011) ‘Multithreading in Java:

Performance and Scalability on Multicore

Systems’ IEEE transactions on computers Vol.

60, No. 11, pp. 1521-1534.

[8] Pallavi Joshi, Chang-Seo Park, Koushik Sen

and Mayur Naik (2009) ‘A Randomized

Dynamic Program Analysis Technique for

Detecting Real Deadlocks’, ACM SIGPLAN

Conference on Programming Language Design

and Implementation (PLDI’09), Dublin, Ireland.

[9] Williams A. Thies W. and Ernst M. D. (2005)

‘Static deadlock detection for java libraries’ In

Proceedings of the 19th European conference

on Object-Oriented Programming, ser.

ECOOP’05. Berlin, ‚Heidelberg: Springer-

Verlag, pp. 602–629.

[10] Wang Y. Lafortune S. Kelly T. Kudlur M. and

Mahlke S. (2009) ‘The theory of deadlock

avoidance via discrete control’ In Proceedings

of the 36th annual ACM SIGPLAN-SIGACT

http://www.ijesrt.com/

[Mohan et al., 3(5): May, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449
 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[730-733]

symposium on Principles of programming

languages, POPL ’09. New York, NY, USA:

ACM, pp. 252–263..

[11] Yan Wen , Jinjing Zhao et al., (2011) ‘Towards

Detecting Thread Deadlock in Java Programs

with JVM Introspection’ International Joint

Conference of IEEE TrustCom-11,pp. 1600-

1607.

[12] Zhi Da Luo, Raja Das, Yao Qi (2011)

‘MulticoreSDK: A Practical and Efficient

Deadlock Detector for Real-world Applications’

IEEE international conference on software

testing, Verification and Validation, pp. 309-

318.

[13] Jula H. Tralamazza D. Zamfir C. and Candea

G. (2008) ‘Deadlock immunity: enabling systems to

defend against deadlocks’ In Proceedings of the 8th

USENIX conference on Operating systems design

and implementation, ser. OSDI’08. Berkeley, CA,

USA: USENIX Association, pp. 295–308.

http://www.ijesrt.com/

